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SUMMARY
In recent years, there has been a surge of interest in using machine learning algorithms (MLAs) in oncology,
particularly for biomedical applications such as drug discovery, drug repurposing, diagnostics, clinical trial
design, and pharmaceutical production. MLAs have the potential to provide valuable insights and predictions
in these areas by representing both the disease state and the therapeutic agents used to treat it. To fully uti-
lize the capabilities of MLAs in oncology, it is important to understand the fundamental concepts underlying
these algorithms and how they can be applied to assess the efficacy and toxicity of therapeutics. In this
perspective, we lay out approaches to represent both the disease state and the therapeutic agents used
by MLAs to derive novel insights and make relevant predictions.
INTRODUCTION: THE NEED FOR MACHINE LEARNING
AND MATHEMATICAL MODELING IN BIOMEDICINE

Machine learning algorithms (MLAs) are a set of algorithms

within the field of artificial intelligence (AI) that can learn rele-

vant relationships within large datasets and develop ideal ap-

proaches to their analysis without prior specification.1–4 MLAs

have found many applications in drug development, including

FDA approval predictions, clinical trial design, drug repurpos-

ing, and even generation of new therapeutic targets.1–4 The

field has experienced a rapid development in the past decade

and is now reaching a degree of maturity and sophistication

that is continually improving.

In the following sections we discuss the basics of MLAs and

lay out a framework for how they can be used for drug develop-

ment. We focus on the methods that have been developed for

creating representations of both the therapeutics of interest as

well as the disease to be targeted. Then we present the models

that leverage these representations to predict the efficacy and

toxicity of new therapeutics.

The field of oncology has been a particular focus for the devel-

opment of new therapeutics and key advances in machine

learning (ML) technology have occurred within the cancer

context.3–5 We delve into the details and highlight the resources

available, principally in this field of research.
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Weoutline the general approach underlyingMLAmodels in the

therapeutics domain, as presented in Figure 1, focusing mainly

on models to predict the efficacy and toxicity of new therapeu-

tics, which in turn inform their likelihood of approval. Particularly,

we summarize this layout by showing key features, model types,

and the insights that each can provide (depicted in detail in Fig-

ure 2). In terms of features, we show in Figure 2A that they can be

split into two key domains: therapeutic and disease state repre-

sentations, respectively. In the top-left panel, we focus on the

small-molecule and protein therapeutic types and show their

innate structure and the various methodologies that have been

developed to represent them. For the disease state representa-

tion, we summarize the related -omic profiles and their corre-

sponding analyses in the bottom panel. Next we demonstrate,

as depicted in Figure 2B, the types of models with which both

feature types can be utilized either separately or together. Spe-

cifically, we highlight the key model types in both the supervised

and the unsupervised domains. Finally, we highlight (in Figure 2C)

the different predictions or insights each of those models can

generate. The predictions can be characterized as either drug

assessment or drug design. For assessment models, a thera-

peutic entity is pre-defined and the value to be predicted is its

potential efficacy or toxicity. For drug design, the models them-

selves would generate potential therapeutics for a particular dis-

ease state. Generative autoencoders can be trained on existing
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Figure 1. A general outline representing a machine learning algorithm dealing with drug response efficacy in patients with cancer

For details, see sections ‘‘the landscape of machine learning,’’ ‘‘representations of drug molecules,’’ ‘‘representations of disease states,’’ and ‘‘therapeutic ef-

ficacy,’’ as well as Figure 2.
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drugs and their efficacy and toxicity can be used to generate new

examples of therapeutics that would be safe and efficacious.6

THE LANDSCAPE OF ML

In this section, we give a brief overview of the types of ML and

artificial models that have emerged broadly in the past decade.

A more detailed exploration of each is provided in our previously

published work.3,7 The first distinction we make is between su-

pervised and unsupervised learning.

Supervised learning
In supervised learning, we generally utilize a large dataset of

labeled data to develop a model that is capable of classifying

new entries with the correct label. It has broad applications for

drug discovery and design as it can be used to assess the effi-

cacy, toxicity, and likelihood of approval of a new therapeutic.

Here, we lay out the basics of the approach to inform the discus-

sion in the rest of the review.

Bias-variance tradeoff

In any supervised learning approach there is an underlying ten-

sion known as the bias-variance tradeoff, which emerges from

two primary concerns that must be accounted for. One relates

to the insufficient relevant data to generate valid rules (the bias

error) and second that the rules generated are too specific to

the particular dataset that is being used to train on (the variance

error).

The bias error can be thought of as underfitting and refers to an

algorithm missing the relevant relationships between the fea-

tures of interest and what is being predicted. The variance error,

also known as overfitting, can be considered as the sensitivity of

the algorithm to changes in the data, where a model is able to

make very accurate predictions with the dataset it was trained

on, but fails to generalize and performs poorly on new data. Un-

derstanding the trade-off will elucidate the rationale behind the

approaches taken when developing these models.

Train-test splitting
The train-validate-test is one of a number of standard ap-

proaches that have emerged to deal with the bias-variance
2 Cell Reports Methods 3, 100413, February 27, 2023
tradeoff. The train-validate-test approach requires the splitting

of the dataset into two major subsets, the ‘‘train set’’ and the

‘‘test set.’’ The former can then be further split into a true train

set and a validation set. The model is then trained on the train

set, and its performance assessed on the validation one. The hy-

perparameters (model parameters that are set prior to training as

opposed to ones derived via training) of the model can then be

adjusted to improve the performance on the validation set.

Once the training and tuning is optimized, then the model can

be assessed on the test set that had not been used in any

way. The approach is meant to avoid the possibility of overfitting

the model to the specifics of the data being used and as a result

can create a generalizable model that would performwell on pre-

viously unseen data.

k-fold cross-validation

A major consideration with the train-test approach is whether

or not the split is done in a truly random fashion and if the re-

sulting subsets are appropriately representative. The method

of k-fold cross validation builds upon the train-test approach

by running the split multiple times. In k-fold cross validation,

the train set is split into a k-subsets, and one of the subsets

is held out and used for validation; this process is repeated

k times with a different subset being held out each time. The

performance is then taken to be the average of the k models

trained.

There are also methods of introducing a degree of stochastic-

ity into the training process by including slight variations in the

datasets used for training or including dropout layers (a ML tech-

nique where certain neurons are ignored during training in a sto-

chastic fashion), where certain learned processes are randomly

inhibited allowing for the development of more flexible programs

that have a better chance at being truly generalizable.7

Classification or regression modeling

Supervised learningmodels can be further categorized based on

the type prediction they are making. The two major model types

are regression and classifiers.

In a classifier model, the prediction of interest takes one of a

few discrete values (e.g., 0 or 1 in a binary manner). A model to

assess whether a drug will be approved or rejected would be
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Figure 2. Overview of preclinical efficacy model and patient genomic profiles

(A) Features comprise. (Top) Therapeutic representations: the structure and baseline representation for small-molecule and biologic therapeutics. The molecular

structure of eribulin (an anticancer chemical drug, brand name Halaven) and its SMILE structure, and the protein structure of trastuzumab (an anticancer therapy

monoclonal antibody, brand name Herceptin) and its amino acid are depicted, respectively. Listing of the possible approaches to generate informative thera-

peutic representations. (Bottom) Disease state representation: the RNA expression profile of cancer cell lines from CCLE (https://sites.broadinstitute.org/ccle/).

The four -omic profiles and their associated processing algorithms are listed.

(B) Themodels. Listing of the supervised learningmodel used for drug assessment: random forests, deep neural networks, and graphical neural networks. Listing

of the unsupervised learning model used for drug design: clustering, biomarker extraction, generative autoencoders.

(C) The predictions comprise. The drug assessment models that can be used as regressor models to predict the efficacy and toxicity models, or as classifier

models to predict approval. The drug design unsupervised models can be used to find new cohorts of patients who could respond to treatments differently, and

generate novel drugs to treat specific patient cohorts.
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considered as such. Regarding regression models, the predic-

tion of interest can take on any continuous value. If we wanted

to predict the efficacy of a cancer drug, bymeasuring the dosage

of the drug required to inhibit 50% of the cancer cells in vitro (the

IC50), we would use a regression model.

Certain ML models are used exclusively for either classifica-

tion or regression. For example, linear regression should only

be used for regression models, whereas logistic regression,

despite the name, should only be used for classification prob-

lems. Certain models such as decision trees, random forests,

support vector machines, k-nearest neighbors, and neural net-

works, have classifier and regressor versions and can be used

for either problem type.

Unsupervised learning
In unsupervised learning the dataset used as a starting point is

unlabeled and the models used are intended to reveal insights

into the underlying structure of the data. The primary outcomes

are: (1) dimensionality reduction, (2) data visualization, (3) feature

extraction, and (4) clustering. These algorithms vary widely in

terms of approach and outcomes, and we review its core con-

cepts in the following sections.
Dimensionality reduction

In dimensionality reduction approaches, highly dimensional data

(e.g., a transcriptomic profile of 20,000 genes for 10,000 patients

as an example) are condensed into their most informative dimen-

sions (e.g., in 2 dimensions for each patient). There are a number

of ways to distill the most important dimensions from such a da-

taset. These techniques have been reviewed previously3,7–9 and

include (1) principal-component analysis (PCA), (2) t-distributed

stochastic neighbor embedding (t-SNE), (3) linear discriminant

analysis, (4) Uniform Manifold Approximation and Projection.

Each of the algorithms has a unique approach, but the underlying

concept is the same. Higher-order data are reduced into a

smaller set of dimensions, which can then be used for either visu-

alization, feature extraction, or as predictive components in

other MLA models.7

A clear application of dimensionality reduction in drug discov-

ery is the use of these techniques for high-dimensional patient

data such as RNA sequencing (RNA-seq) expression. To

demonstrate the process of unsupervised learning we show in

Figure 3A how training a t-SNE model on unlabeled cancer pa-

tient genomic information results in the natural emergence of

clusters that correlate with the type of cancer the patient had.
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Figure 3. Dimensionality reduction and efficacy prediction for cancer patients

(A) The RNA-seq expression profiles of cancer patients were clustered using t-SNE embedding. Each patient’s profile is presented as a single dot in the reduced

dimension. Each patient is color labeled according to their TCGA cancer type.

(B) Same as in (A) but focused on breast cancer (BRCA) patients with each patient colored by their BRCA subtype.

(C) The predicted response of each patient to eribulin according to the PaccMann IC50 prediction model6 utilizes the genome expression profile and the chemical

structure of the drug to predict efficacy (see section ‘‘models of interest to predict efficacy,’’ subsection‘‘clinical efficacy modeling’’).

(D) The predicated efficacy averaged according to the breast cancer subtypes (see section ‘‘models of interest to predict efficacy,’’ subsection‘‘clinical efficacy

modeling’’). Error bars connote the 95% confidence intervals range.

Table 1. List of the major bioinformatic databases referenced in

the text

Database name Data types

GTEX10 genomic/transcriptomic

UK Biobank11 genomics

TCGA12 genomics/transcriptomics

ENCODE13 epigenetics

STRING14 proteomics

ProteomicsDB15 proteomics

KEGG16 genomic/pathway

REACTOME17 pathway

PubChem18 small-molecule properties

UniProt19 protein properties

ChEMBL20 therapeutics database

clincaltrials.gov clinical outcomes
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In Figure 3B, t-SNE is used on the transcriptomic profiles of

1,086 breast cancer (BRCA) patients acquired from TCGA

(The Cancer Genome Atlas Program, https://www.cancer.gov/

about-nci/organization/ccg/research/structural-genomics/tcga;

see Table 1). The transcriptomic profile consists of the gene

expression values of 17,715 genes. After the t-SNE analysis,

the 17,715 genetic dimensions are reduced to just 2, allowing

us to easily visualize the data as the two-dimensional plot shown.

Each point here is a tumor sample from a BRCA patient. The dis-

tance between the points is an indicator of the degree of similar-

ity between the patient samples. We label each sample with the

identified BRCA subtype according to TCGA. We find that the

clusters correspond well to the indicated cancer subtype.

Clustering techniques

Clustering algorithms can be used to find large-scale structures

within a dataset.7 These algorithms can split the data points in a

dataset into a specified number of clusters and assign each point

to one of the clusters. Clustering can reveal higher-order struc-

tures within the dataset and help determine similarity between

different entries.

Types of such algorithms include3,7,21–24 (1) k-means clus-

tering, (2) hierarchical clustering, (3) Fuzzy C means clustering,

(4) mean shift clustering, (5) density-based spatial clustering of

applications with noise, and (6) Gaussian mixed models. More-

over, they can reveal mislabeling within certain datasets, where

entries supposedly belonging to one group are revealed to belong

to another. Clustering can be especially useful in the context of

drug design as it can reveal patient sub-populations that might

be more or less sensitive to particular treatment regimes.

Neural network encoders

Autoencoders are a relatively new form of unsupervised learning

models that learn to generate data that resemble the input data

they are presented with.25 The data are fed into a neural network,

and then regenerated from the reduced embedding that the neu-

ral network develops. These models are called generative
4 Cell Reports Methods 3, 100413, February 27, 2023
models (a form of neural networks that learn to create new exam-

ples of the data types that are used to train them) as they create

new data points in accordance with the specifications of the

input data. In drug discovery, these models can be used to

generate new possible therapeutics with the requirement of hav-

ing certain efficacy and toxicity profiles.6
REPRESENTATIONS OF DRUG MOLECULES

Constructing an ML algorithm to connect a molecular state, re-

flecting a disease, with the response to a particular therapeutic

intervention and more specifically to the actual drug molecule,

faces certain challenges. One of them is to select the best com-

puter-readable form to represent the therapeutic agent under

investigation. Here, we discuss themajor approaches developed

to address this question (see also Figure 2).

https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
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Small-molecule representation
A small molecule is generally defined as an organic compound

with a molecular weight of less than 500 Da.26 The manageable

size of small-molecule drugs allows for a tractable representa-

tion of their structures in a computer-readable way. In this

section we review the various methods that are available for rep-

resenting small molecules in a computer-readable manner.

SMILE

One approach of drug structure representation is the simplified

molecular input line entry system (SMILE).27 The chemical anno-

tation system uses a few syntactical rules to allow for the repre-

sentation of a molecular structure in a computer-readable form.

SMILE structures use characters to represent each of the atoms

within a molecule and special ones to represent the bonds be-

tween them as well as the higher-order structural properties of

the molecule such as aromaticity or cyclicality.

Interest in using SMILEs in the context of ML and generative

models revealed a major problem. The generated SMILEs might

not correspond to valid molecules. Addressing this issue led to

the development of the self-referencing embedded strings

(SELFIES),28 which modifies the initial system to ensure that all

generated strings refer to valid chemical molecules. Neither

SMILES nor SELFIES can be directly used in ML models, as

they often require their inputs to be in a vectorized or numerical

form, whereas SMILES are character representations. Multiple

approaches have emerged to confront this issue.29

Fingerprinting

One method of embedding SMILE structure is called finger-

printing, where a chemical structure is converted into a binary

vector of pre-determined size that captures the structural infor-

mation of the original compound. One of the most utilized finger-

printing techniques is Morgan fingerprinting.30 Binarizing the

chemical structure allows for the utilization of model architec-

tures that expect binary vector input. Other fingerprinting tech-

niques have been developed since to expand the capacity of

and improve upon Morgan fingerprinting.31 Vectorizing the mo-

lecular structure of a therapeutic through fingerprinting makes

it possible to leverage a number of ML architectures that require

numerical features.

Natural language processing

With advances in natural language processing (NLP) models, an

NLP approach to chemical structure embedding has gained

traction in recent years. In this context, the SMILE/SELFIE string

is tokenized and a specific language is trained to embed the

chemical structure.6

Utilizing NLP-inspired models allows the models to capture

higher-order relationships across larger distances within the

molecule of interest. The NLP approach has been found to

outperform the fingerprinting technique in a number of different

classification tasks.32 However, these NLP techniques are still

somewhat underutilized, thereby providing a ripe area for re-

searchers in the field to improve the models and predictions.

Molecular graphs

Graphical representations of molecules are another way to

capture the full complexity of the molecular therapeutic. In this

framework, each atom is encoded as a node in a graph and the

connections between them constitute edges. Creating molecular

graphs has become a routine operation that can be easily con-
ducted through softwaremodules such asRDKit in Python, where

the Le Verrier-Faddeev-Frame approach is applied.33 The use of

graphs to represent molecular structures has become a standard

feature of many top-of-the-line drug efficacy models.34–36 How-

ever, they do require additional complexity in terms of the archi-

tectures of the models that can utilize them. Therefore, they are

better suited for larger therapeutics, such as proteins and pep-

tides, where fewer adequate alternatives exist.

Protein/peptide representation
Representing protein therapeutics in a computer-readable form

poses significant challenges that are not present with small mol-

ecules. The size and complexity of a protein therapeutic makes

the previous approaches untenable.

Protein sequences can be embedded by their physical pro-

perties or by their amino acid sequences.37 Using physical prop-

erties poses a challenge as it is difficult to know a priori which

properties will be most relevant to a learning task. Multiple

methods of embedding the amino acid structures have been

developed in the past decade and are reviewed below.

NLP for protein encoding

NLP approaches such as word2vec and doc2vec have been

used to develop learned embeddings of words or sentences

based on their context and surrounding words.38,39 A number

of attempts have been made to apply these approaches to pro-

tein sequences by segmenting the protein sequences into frag-

ments of length k (k-mers).40–43 The protein embedding then

learns which segments of a protein sequence are expected to

appear next to one another. The approach can then be com-

binedwith task-specific learning to create embeddings that learn

to extract the relevant aspects of the amino acid sequence.

Task-assisted protein embeddings

This is an approach building upon the NLP and a semi-super-

vised task ML paradigm described above.44 Task-assisted pro-

tein embeddings (TAPE) utilizes biologically relevant tasks to

create an informed protein embedding from an amino acid input.

The tasks highlight threemajor areas of protein biology: (1) struc-

ture prediction, (2) detection of remote homology, and (3) protein

engineering. Rather than utilizing the word2vec or doc2vec

approach, the TAPE approaches utilize other NLP paradigms,

namely next-token prediction and masked-token predic-

tions.45,46 The TAPE embeddings have been adopted widely

and have been used in a number of higher-order models such

as IBM’s PaccMannRL.6

Graphical representations

Graphical protein representations have been developed and

have been quite successful in predicting protein function and in-

teractions.47 In these graphs, each node is an amino acid residue

and the edges contain information regarding the distances and

angles between residues.48 Such a representation scales more

efficiently compared with 3D structural representations used in

convolutional neural nets.49

REPRESENTATIONS OF DISEASE STATES

The previous sections described the work conducted to develop

representations of the therapeutic agent. The ML models of in-

terest also require a representation of the disease state, the
Cell Reports Methods 3, 100413, February 27, 2023 5



Table 2. Performance of various deep neural networks models

for IC50 prediction using different therapeutic and disease-state

representations

Model

Name

Therapeutic

representation

Disease state

representation

Spearman

correlation

DrugCell5 Morgan fingerprint genomic 0.80

Paccmann6 SMILE language

tokenization

transcriptomic 0.88

DeepDSC55 Morgan fingerprint transcriptomic 0.84

CDRScan56 molecular

fingerprint

genomic 0.84

tCNNs57 one-hot encoding genomic 0.84

GraphDRP34 molecular graph genomic 0.85

DeepCDR35 molecular graph genomic and

transcriptomic

0.82

AGMI36 molecular graph genomic and

transcriptomic

0.92

Spearman correlations were reported in the papers referenced or in.36

Perspective
ll

OPEN ACCESS
therapeutic intends to target. The classic approach is to think of

the disease representation in terms of a genetic or protein target

that is associated with disease progression, which the drug

would interact with.

The early interest in ML-assisted drug design focused on the

intersection of molecular dynamic modeling with ML being uti-

lized to design therapeutic molecules specifically targeting a dis-

ease-associated enzyme’s active site.50 The representation of a

disease state as a single gene or protein target of interest has

been covered extensively elsewhere51,52 and can be best appre-

ciated in the context of the quantitative structure-activity rela-

tionship,53 which will not be covered here. Instead, we center

the higher-order representations profiling the disease state to

include the genomic, epigenetic, transcriptomic, and proteomic

profiles of the diseased cell, either in vitro or from patients

suffering from a specific disease (Figure 1). We will look at these

approaches specifically in oncology and consider how they

might be extended to other indications.

Genomics
The genomic profile of a disease state can be identified through

the genetic sequencing of patients or disease state models. The

genetic sequence allows for the identification of key mutations

that are present and may differentially affect the onset of the dis-

ease and the outcome possibilities. Genomicmutations can be a

single-nucleotide variant or single-nucleotide polymorphisms,

insertions, deletions, inversions, copy number variations, tan-

dem duplications, dispersed duplications, mobile element inser-

tions, or translocations. The genomic mutational profile can then

be used as a feature for ML models.5 The mutational status and

copy number variation have been used repeatedly to predict the

potential efficacy of new therapeutics and are summarized in

Table 2.34,36,54

Epigenetics
Epigenetic modifications are critical to gaining a full understand-

ing of the processes underlying a biological state. Comprehen-
6 Cell Reports Methods 3, 100413, February 27, 2023
sive databases for epigenetic information are currently being

developed and are a fast-growing field in bioinformatics.

One highly informative structural feature that can provide

epigenetic insights is accessible chromatin. Human assay for

transposase-accessible chromatin with high-throughput seq-

uencing (a method to assess genome-wide chromatic accessi-

bility datasets) provides a detailed map of accessible chromatin,

has been accumulating rapidly in recent years, and an effort has

been undertaken to provide annotated data in a centralized pub-

licly accessible database.58

Beyond that, the Roadmap Epigenomics Mapping Con-

sortium project, as part of the Encyclopedia of DNA Elements

(https://www.encodeproject.org/), has gathered information on

DNA methylation, histone modification, chromatin accessibility,

and small RNA transcripts in primary human tissues.13,59

The epigenetic tracks provided by the Roadmap Epigenomics

Mapping Consortium have been used to train a convolutional

neural network to predict mutational rates within genomic re-

gions, and find mutations that have positive associations with

sub-cancer types.60

Transcriptomics
One of the most ubiquitous -omic profiles used in computational

bioinformatics today is the transcriptomic profile, which is

captured through RNA-seq expression data. Here, the degree

of mRNA expression gives a sense of which genes are activated

and which are inhibited in a given cell.

RNA-seq profiling is conducted on a bulk population of cells or

in single cells. High-throughput sequential RNA-seq can also

allow for spatiotemporal sequencing showing how the mRNA

expression profile shifts over time or across spatially separated

cells.

Proteomics
Databases of protein structure, properties, interactions, and

abundances all inform the proteomic profile of the diseased

state. The structural properties and amino acid sequences of

proteins found in UNIPROT19 are used to create reduced

embedding of protein targets and biologic therapeutics.

The CHEMBL database (https://www.ebi.ac.uk/chembl/) pro-

vides key features and ontologies for antibodies and therapeuti-

cally relevant protein targets, which can be used as features in

drug prediction models directly, or to create protein networks

and similarity metrics for possible drug targets.

The ProteomicsDB (https://www.proteomicsdb.org/) provides

mass spectrometry data determining protein abundances in

different biological tissue,15 providing a proteomic profile for

the disease state, which can be combined with the other -omic

profiles described.

MOLECULAR PATHWAYS AND INTERACTIONS

Dedicated databases capture the interactions between individ-

ual genes, transcription factors, mRNA, and proteins as biolog-

ical pathways. Reactome,17 KEGG,16 the Pathway Commons,61

and Omnipath62 are major databases that catalog biological

pathways. They can be used to construct genomic networks to

create disease signatures, and to find with pathways are

https://www.encodeproject.org/
https://www.ebi.ac.uk/chembl/
https://www.proteomicsdb.org/


Perspective
ll

OPEN ACCESS
particularly affected in the diseased state. The STRING database

(https://string-db.org/) provides information on both physical

and functional protein-protein interactions (physical contacts of

high specificity between two or more proteins),14 which can be

used with network propagation algorithms to find genomic sig-

natures of interest and reduce the dimensional complexity of

-omic data generally.63 These databases can be leveraged and

integrated to create a holistic view of the biology underlying

the diseased state.

While each of the -omic data types described above can be

used independently to predict drug response, models that

combine multiple data types have been found to yield more ac-

curate results.64,65 Various architectures of combining clinical

and genomic data for cancer patients have been developed.

One approach is to use autoencoders to condense different

data types into a reduced embedding and then combine the em-

beddings themselves.66 Another is COSMOS (causal oriented

search of multi-omic space), an -omic integration method that

systematically generates mechanistic hypotheses through

causal reasoning.64,65 COSMOS generates trans-omic networks

that capture the relationships between entities across -omic

levels.

The trans-omic networks are used to find signatures, or finger-

prints, of disease subtypes. Gene signatures allow researchers

to use a smaller subset of genes as key markers, reducing the

complexity of the -omic profiles generated.67

Knowledge graphs
Another method to combine multiple data types is to use a

knowledge graph embedding (KGE), reflecting the disease

state.68 Multiple, specific reviews have covered the subject of

KGE recently.69,70 Knowledge graphs are heterogeneous, which

sets them apart from homogeneous graphs by the fact that the

edges and nodes can be of differing types.

With this approach, the therapeutic and -omic profiles are

embedded as entities features in a graph, and the interactions

of the different entities are expressed as relations. The -omic re-

lationships are captured through the following data types: (1)

gene ontologies (a formal representation of the body of knowl-

edge within the genomic domain), (2) gene-gene interactions (a

set of functional associations between genes), (3) protein-protein

interactions, (4) gene pathways (sequential steps that are medi-

ated by gene function that operate together to determine a

biological process), and (5) Pearson correlation coefficients (a

measurement of the degree of similarity between two entities).

Knowledge graphs can be considered as a series of triplet

structures that describes the relationship r between two entities,

e1 and e2. The entities could refer to genes, therapeutics, or even

broader biological concepts. For example, appearing as (gene A,

regulates, gene B) or (disease A, downregulates, gene B), and

even (drug A, treats, disease A). The relational datasets are noisy

and incomplete, where the relationship may appear as (disease

A, downregulates, ?), or (drug A, treats, ?), or (?, treats, disease

A). The drug discovery process can then be reformulated as

finding missing links between the various embedded entities.

Prediction models can be trained to find these missing links,

which in turn may lead to finding new disease biomarkers,

drug repurposing, and drug discovery, respectively. The network
representations generated could then be used for discovery of

disease gene signatures.67

Possible KGE model architectures include: ComplEx,71

DistMult,72 RotatE,73 TransE,74 and TransH.75 Hetionet76 and

BioKG77 are KGE model architectures developed specifically

for drug discovery.

THERAPEUTIC EFFICACY

To monitor the therapeutic efficacy, we need measures of effec-

tiveness for a therapeutic. Various values are used and dis-

cussed below.

Preclinical IC50

The cell line resources highlighted above also provide preclinical

efficacy data in the form of IC50 for each therapeutic-cancer cell

line combination.78 Within the context of cancer treatment, IC50

refers to the minimum dosage required to inhibit 50% of the can-

cer cells. While IC50 is an indicator of potential efficacy, the rela-

tionship between the IC50 value and drug approval is unclear.

The IC50 value is an in vitro measurement, therefore translation

into clinical efficacy is not guaranteed. Furthermore, it does not

take into account the potential toxicity of the therapeutic being

investigated.

Clinical outcomes
The focus of most drug efficacy models has been the preclinical

IC50 measurement as a number of public databases, such as

Cancer Cell Line Encyclopedia (CCLE) (Broad Institute, https://

sites.broadinstitute.org/ccle/) and Genomics of Drug Sensitivity

in Cancer (GDSC) (https://www.cancerrxgene.org/), provide

those data in a centralized location. In the case of clinical out-

comes, the data are less centralized and require a fair amount

of curation. The major resource for clinical outcomes is

ClinicalTrials.gov, a registry of clinical trials run by the US Na-

tional Library of Medicine. However, the data provided require

manual amending and curation.

In oncology a number of key clinical endpoints are used to

assess clinical efficacy.

1. Objective response rate (ORR): the percentage of patients

who respond to treatment in a defined manner, e.g., the

tumor shrinks or disappears.

2. Progression-free survival: the median or mean period of

time that each patient spendswithout the disease showing

any progression or advancing further.

3. Overall survival: the median or mean period of time that

each patient, who takes a particular treatment, survives

post-treatment.

A particular challenge in applying the preclinical cell line

approach to patient data is that there are comparatively fewer

datasets where the -omic profiles, treatment, and response of

the patients are all available.

Models of interest to predict efficacy
A number of models have been developed to predict the IC50 of

drug-cell line combinations. In Table 2 we list a number of the
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models that have emerged in the past few years as well as their

Spearman correlation as an assessment metric. All the models

follow the same core idea of having therapeutic and disease

state representations with the goal of predicting the IC50 of a

drug and cell line combination. The biggest differences are

what the models use to represent the therapeutic as well as

the disease state and the underlying architecture of the neural

network.

Clinical efficacy modeling

Similar approaches have yet to emerge to predict clinical effi-

cacy directly. The limitations described above regarding clinical

data make adopting the preclinical framework challenging. Spe-

cifically, the biggest issue is the lack of large databases of patient

outcomes with multiple treatment options.

To address this issue, we can create patient populations rep-

resentations called virtual-cohorts based on: (1) cancer type, (2)

stage, (3) demographic information, and (4) biomarkers. The

response of these virtual cohorts to different therapies is then

considered as independent data points, with a representative

-omic profile for each cohort generated. In Figure 3C we show

the results of a mixed model where we take the transcriptomic

profiles of cancer patients and use an IC50 predictor6 to model

efficacy. Figure 3C is the same plot as in Figure 3B; however,

rather than the TCGA subtype as the hue color, we show the pre-

dicted efficacy value for each patient and a representative ther-

apeutic, in this case eribulin. As a result, we have a proxy for how

predictive each of the treatments will be for each of the patients

with their unique expression pattern.

We then integrate the predicted efficacy over the patients for

each subtype and plot the expected efficacy of the therapeutic

for each indication subtype, as shown in Figure 3D. It is important

to highlight that we could have also found the predicted efficacy

for cluster generated from the embedding itself. However, we

chose to focus on the canonical subtypes to compare the pre-

dicted results with data in the literature. In this particular

example, the results are consistent as eribulin has been found

to be more effective against triple-negative ‘‘basal’’ breast can-

cer.79 For a more systematic assessment of this approach, we

can utilize a dataset of 194 therapeutics that have either been

approved or rejected by the FDA for a set of 14 oncology sub-

types, and we can assess how the predicted IC50 values corre-

spond to their clinical potential.

Before establishing the efficacy of the predicted models, we

should first set up a baseline of how predictive the real IC50

values are of eventual approval for 74 distinct therapeutics pre-

sent in CCLE. In the top panel of Figures 4A and 4B we show the

IC50 value distributions of drug-disease pairs collected from

CCLE for both the approved and the rejected drugs. The results

show that therapeutics with a low IC50 value against cancer cell

lines have a higher historical approval rate than those with higher

IC50 values. Notice, however, that a low IC50 is not a guarantee

that the drug gains approval, as a number of low IC50 drug-dis-

ease pairs end up getting rejected. The IC50 is a measure of

how effective the drug is at inhibiting a cancer model cell line.

On its own, it gives no information on its ability to target healthy

cells. Also it does not provide a sense for how it might behave

within the context of the human body. However, it is quite clear

that it has real predictive value.
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In the middle panels of Figures 4A and 4B we show the results

using the predicted values for IC50 for the various therapeutic

agents against the CCLE cancer cell lines. The relationship be-

tween IC50 and approval is consistent with the real data.

In the bottom panels of Figures 4A and 4B we also show pre-

dicted IC50 values using the patient transcriptomic profiles

collected from TCGA. A similar pattern holds with the drug-dis-

ease pairs that are expected to have low IC50 values, and have

correspondingly higher rates of approval historically. The results

are summarized in Figure 4C, where the IC50 distributions shown

are binned and their historical approval rate is calculated. There

is a consistent pattern between the real and the predicted IC50

values, with the high-efficacy models having an increased prob-

ability for approval.
TOXICITY

Any therapeutic that seeks to gain FDA approval must have an

acceptable safety profile. Therefore, being able to predict the

potential toxicity of a new therapeutic agent is just as important

and assessing its efficacy.

Developing models to predict toxicity requires access to reli-

able large-scale data for assessment of various chemical agents.

The US Tox21 program is an initiative that has developed a num-

ber of in vitro assays that utilize quantitative high-throughput

screening to generate a large number of toxicity measurements

for thousands of various chemical agents.80 The Tox21 in vitro

assays are reported to be as reliable as animal models in predict-

ing human toxicity levels81 and have clear utility in predicting

adverse effects of a drug.82 The massive Tox21 dataset has

been used to develop multiple ML models for predicting toxicity

as part of the Tox21 challenge.83 One of the best performing

models achieved an ROC-AUC of 0.88 on predicting Tox21

data.84 The toxicity prediction can then be utilized by other

higher-order models to assess the likelihood of approval for

new possible therapeutics.

In Figure 4D we show the relationship between the predicted

toxicity84 and the approval rate. As was expected, the therapeu-

tics with lower predicted toxicity have a higher historical

approval rate. The relationship in itself is not surprising; however,

it is worth noting that the toxicity value used is a purely predicted

value using a model that only requires a representation of the

therapeutic, in this case an SMILE structure.
PREDICTING LIKELIHOOD OF FDA APPROVAL FOR
THERAPEUTICS

In Figure 4E we developed a simple random-forest classifier

model to predict whether a drug gains approval for a specific

indication. The models use only a few features, which are high-

lighted on the x axis: the clinical ORR, the predicted IC50, and

the predicted toxicity. We show the results of a 10-fold cross-

validated model for each of the feature sets, as summarized in

Table 3. The ORR is in itself predictive of approval (AUC =

0.83), but has a wide spread in the AUC between various folds.

The inclusion of the predicted IC50 and the toxicity improves

the predictions and creates more consistent predictions
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Figure 4. Exploring the relationship between drug-disease IC50 value and the likelihood of approval

(A) Probability distributions differential for the IC50 of a drug disease where the probability difference of the drug being approved or rejected is calculated for each

bin. (Top) Real IC50 values collected from CCLE and averaged over the indication subtype that each cell line is associated with. (Middle) Predicted IC50 values

using a previously published model6 using the transcriptomic profiles of the CCLE cell lines. (Bottom) Predicted IC50 values using the same model but utilizing

patient transcriptomic data collected from TCGA.

(B) Same as (A) but plotted as cumulative probability distributions.

(C) Calculated historical approval rates for different drug-disease combination of the probability distribution. Bins of low IC50 values, i.e., high efficacy, have a

higher historical approval rate than those of high IC50/low efficacy. The three lines correspond to the three data types: real IC50 (blue), cell line predicted IC50

(green), and patient predicted IC50 (orange).

(D) The historical approval rates of the binned toxicity for each of the drugs predicted using previously publishedmodels.80 Lower predicted toxicity drugs have on

average higher historical approval rates than high toxicity drugs.

(E) Simple random forest model predicting approval using only a few key features (objective response rate, predicted patient IC50, and predicted toxicity). As can

be seen, inclusion of predicted toxicity and IC50 improves the predictive capacity of themodel. Themid-line represents themedian, and the box-length shows the

interquartile range (IQR) between the 25th and 75th quartiles of the data. The whiskers represent the range of the remaining data if they fall within 1.5x of the IQR

range; otherwise the data points are plotted as outliers.
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(AUC = 0.89), with a much tighter standard deviation of 0.06

compared with 0.13 for the ORR alone.

FUTURE DIRECTIONS: WHERE WE STAND AND WHERE
WE ARE HEADING

In this perspective, we lay out the basic schema of the approach

that many AI models take in the domain of drug discovery and

design. We also review the fundamentals in terms of model
types, data sources, and the potential insights each provide.

Subsequently, we show the ability of these models to inform

the likelihood of approval by utilizing the predicted efficacy and

toxicity of a potential therapeutic.

Yet, there are a number of areas of active research that we did

not touch upon so far. Within the domain of therapeutic re-

presentation most of the current work has focused on small-

molecule therapies, as they are the most tractable. Predicting

the efficacy and toxicity of higher-order therapeutics, such as
Cell Reports Methods 3, 100413, February 27, 2023 9



Table 3. AUC values for random forest models predicting the

approval of drug-indication pairs using the features listed

Features

Average AUC

(10-fold CV)

STD AUC

(10-fold CV)

ORR 0.83 0.13

ORR + predicted toxicity 0.89 0.08

ORR + predicted IC50 0.88 0.07

ORR + predicted toxicity +

predicted efficacy

0.89 0.06
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large proteins, mRNA therapies, and cell therapies, are lacking.

These advanced therapeutic types and their associated repre-

sentations are an area of active research and are expected to

advance significantly in the near term.

For the representation of the disease state, we looked at the

different -omic profiles as a way to capture the relevant informa-

tion. While this approach is appropriate for diseases, such as

oncology and autoimmune diseases, they are not directly trans-

ferable to bacterial or viral diseases. There, representation of the

pathogen of interest would be more appropriate.

In terms of the model types we discuss, we look at supervised

and unsupervised learning, but we did not delve into reinforce-

ment learning (RL) (a form of ML wherein optimal strategies are

found by defining an agent, an environment, and a cost function)

or generative models.6 In RL models the approach is quite

different, as the researcher must a priori define a state space

or ‘‘environment,’’ an agent with well-defined actions within the

environment, and a cost function to be optimized for a particular

task. Moreover, these models can be combined with generative

ones and efficacy predictors to develop novel therapeutics that

are designed to target specific disease states.6

The use of MLA for the purposes of drug discovery, assess-

ment, and design is still in its infancy. Despite recent advances,

it is quite evident that the future will bring even more rapid and

consequential applications of MLA in this field.
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